MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation

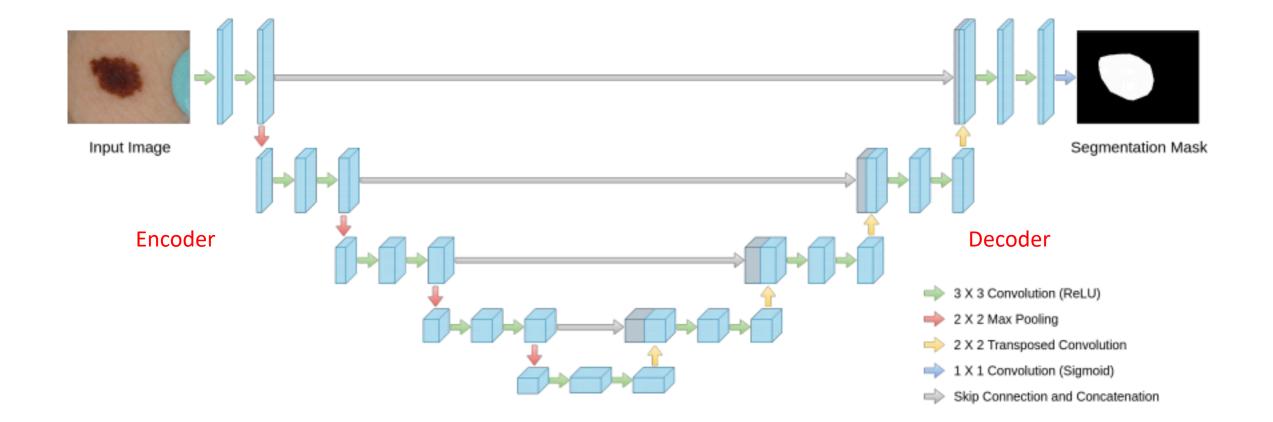
Author: Nabil Ibtehaz and M. Sohel Rahman

Presenter: Luu Minh Sao Khue

Introduction

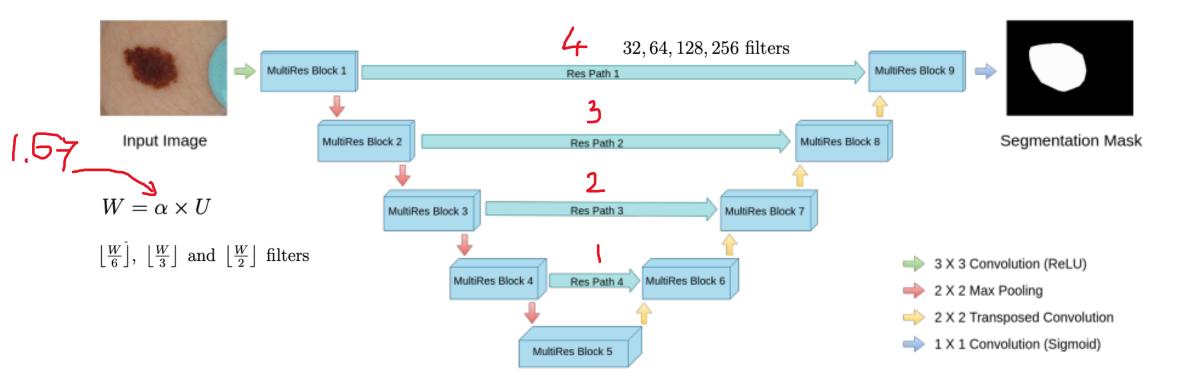
- What have been done:
 - Add modifications to improve upon the U-Net model
 - Compare MultiResUNet with the classical U-Net 5 datasets of various medical images
- Result:
 - Ideal images: slight improvements
 - Challenging images: remarkable gain in performance
 - Relative improvements respectively: 10.15%, 5.07%, 2.63%, 1.41%, and 0.62%

Overview of the U-Net Architecture

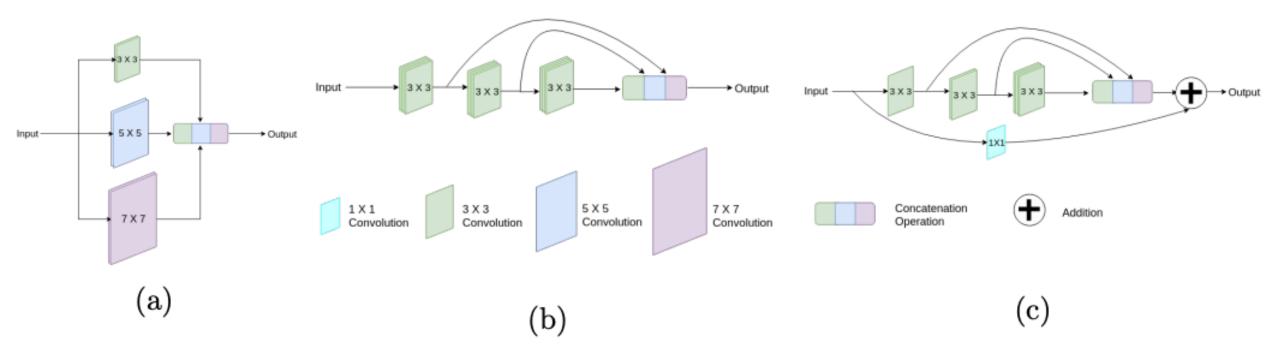


Proposed Architecture

• Replace the sequence of two convolutional layers with the proposed MultiRes block

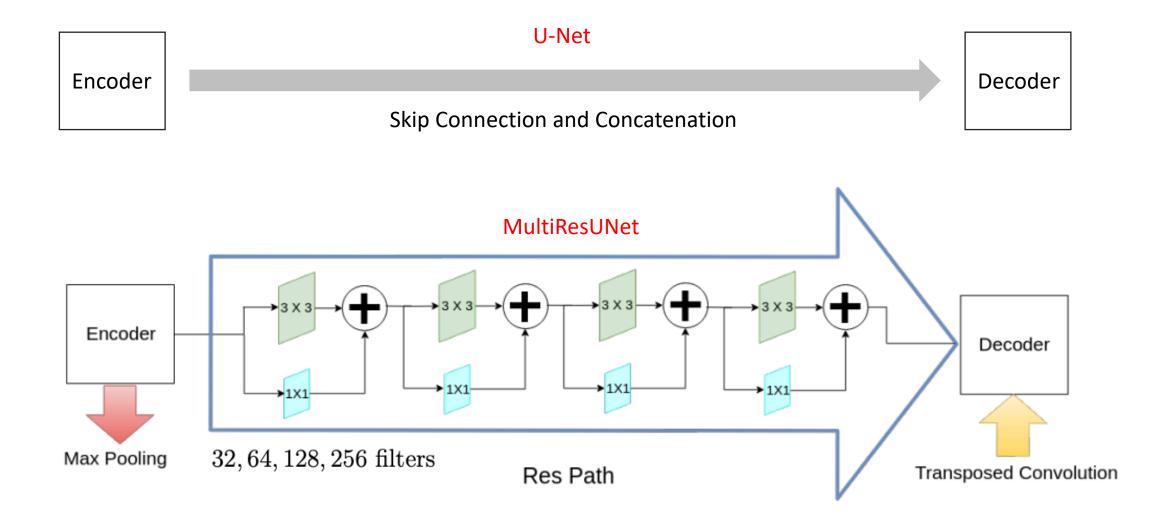


MultiRes block – capture features in different scales



- Replacing the convolutional layers with Inception-like blocks should facilitate the U-Net architecture to reconcile the features learnt from the image at different scales
- Factorize the bigger, more demanding 5 × 5 and 7 × 7 convolutional layers, using a sequence of smaller and lightweight 3 × 3 convolutional blocks
- Gradually increase the filters in those (from 1 to 3), to prevent the memory requirement of the earlier layers from exceedingly propagating to the deeper part of the network

Res path – reduce semantic gap



Datasets

- Fluorescence Microscopy Image
- Electron Microscopy Image
- Dermoscopy Image
- Endoscopy Image
- Magnetic Resonance Image

Table 2: Overview of the Datasets.

Modality	Dataset	No. of images	Original Resolution	Input Resolution
Fluorescence Microscopy	Murphy Lab	97	Variable	256×256
Electron Microscopy	ISBI-2012	30	512×512	256×256
Dermoscopy	ISIC-2018	2594	Variable	256 imes 192
Endoscopy	CVC-ClinicDB	612	384×288	256 imes 192
MRI	BraTS17	210 HGG + 75 LGG	$240\times240\times155$	$80 \times 80 \times 48$

Experiments

- Baseline: original U-Net with five-layer deep encoder and decoder, with filter numbers of 32, 64, 128, 256, 512.
- 3D version: substituting the 2D with the 3D coutnerparts without any further alterations
- Pre-processing: resize and convert to range [0..1]
- No post-processing
- Sigmoid on the last layer with threshold = 0.5

2D		3D		
Model	Parameters	Model	Parameters	
U-Net (baseline)	7,759,521	3D U-Net (baseline)	19,078,593	
MultiResUNet (proposed)	$7,\!262,\!750$	MultiResUNet 3D (proposed)	$18,\!657,\!689$	

Experiments

- 5-fold cross validation over 150
- Optimizer: Adam

• Loss function: Cross Entropy
$$(X, Y, \hat{Y}) = \sum_{px \in X} -(y_{px} \log(\hat{y}_{px}) + (1 - y_{px}) \log(1 - \hat{y}_{px}))$$

$$J = \frac{1}{n} \sum_{i=1}^{n} Cross \ Entropy(X_i, Y_i, \hat{Y}_i)$$

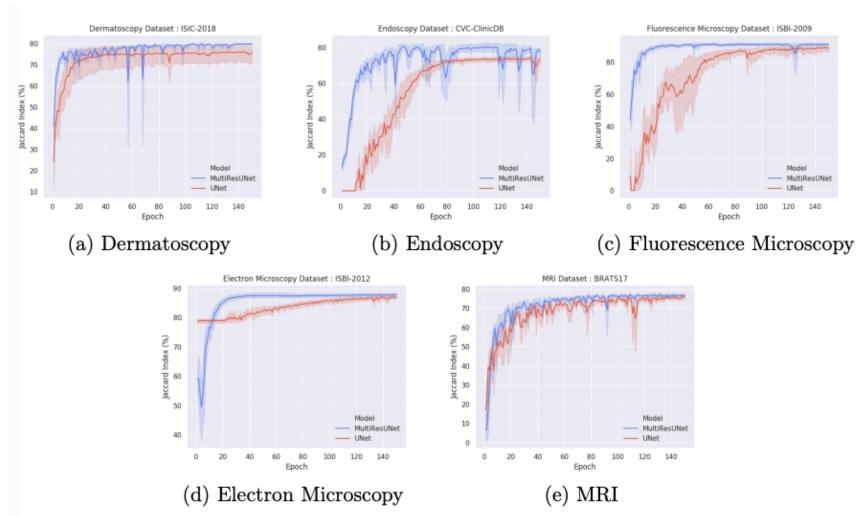
• Evaluation metric:

Jaccard Index =
$$\frac{Intersection}{Union} = \frac{A \cap B}{A \cup B}$$

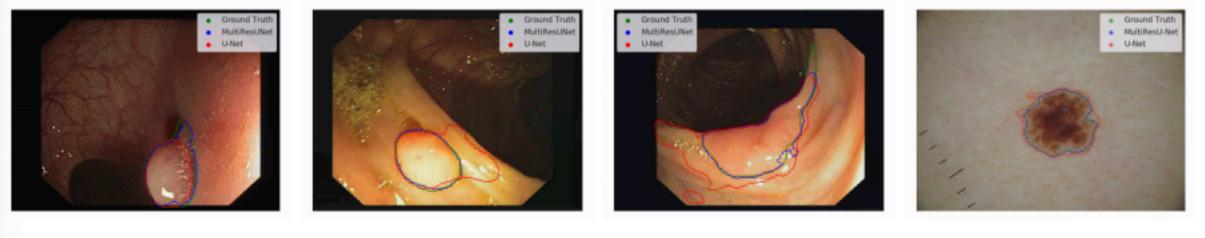
- MultiResUNet Consistently Outperforms U-Net
 - On all different types of medical images, remarkable improvements for Dermoscopy and Endoscopy images (less uniform images)

Modality	MultiResUNet (%)	U-Net (%)	Relative Improvement (%)
Dermoscopy	80.2988 ± 0.3717	76.4277 ± 4.5183	5.065 ★
Endoscopy	82.0574 ± 1.5953	74.4984 ± 1.4704	10.1465 ★
Fluorescence Microscopy	91.6537 ± 0.9563	89.3027 ± 2.1950	2.6326
Electron Microscopy	87.9477 ± 0.7741	87.4092 ± 0.7071	0.6161
MRI	78.1936 ± 0.7868	77.1061 ± 0.7768	1.4104

• MultiResUNet can Obtain Better Results in Less Number of Epochs



- MultiResUNet Delineates Faint Boundaries Better
 - For more challenging images, especially with not so much conspicuous boundaries, U-Net seems to be struggling a bit



(a)

(b)

 (\mathbf{c})

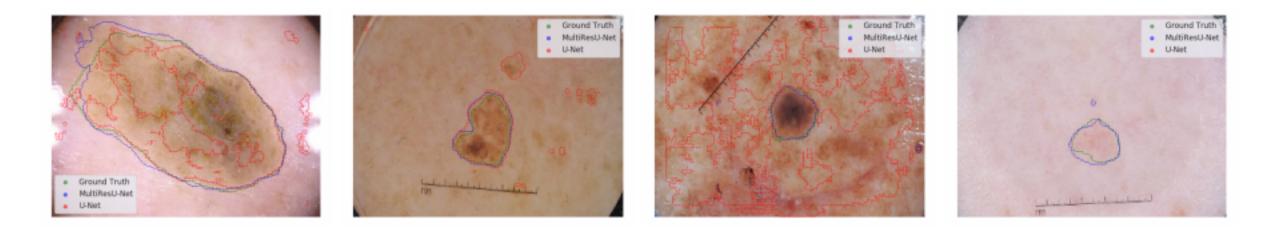
(d)

(a)

MultiResUNet is More Immune to Perturbations

b

- U-Net was unable to segment the forground as a continuous region
- for images where the background is not uniform, the U-Net model seems to make some false predictions
- More false on the rough background or even fail to make predictions



(c)

(d)

- MultiResUNet is More Reliable Against Outliers
 - MultiResUNet segmentation on outliers were consistently better than that of the U-Net.

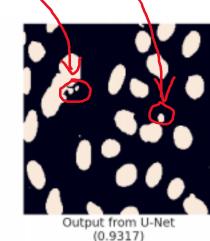
Not cell nuclei

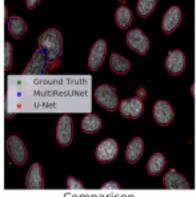
• fluorescence microscopy images



Ground Truth

Output from MultiResUNet (0.9643)

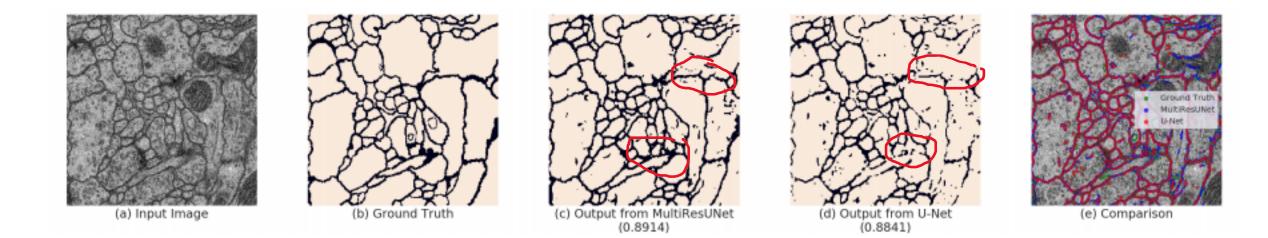




Comparison

Input Image

- MultiResUNet on Segmenting the Majority Class
 - Usually, ROI consists of a small portion, but in the Electron Microscopy dataset the ROI under consideration comprises the majority of the images



References

- MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation (<u>https://arxiv.org/pdf/1902.04049.pdf</u>)
- U-Net: Convolutional Networks for Biomedical Image Segmentation (https://arxiv.org/pdf/1505.04597.pdf)