The Effectiveness of Data Augmentation in Image Classification using Deep Learning

Rusnak A.D.

Department of Mechanics and Mathematics

March 9, 2021

- Traditional Transformations
- Generative Adversarial Networks
- Learning the Augmentation

Traditional Transformations

Figure I: Traditional Transformations

Generative Adversarial Networks

Figure II: Style Transformations via GANs

Learning the Augmentation

• Content loss

$$L_a^{content} = rac{1}{D^2} \sum_{ij} (A_{ij} - T_{ij})$$

• Style loss via gram matrix

$$G_{ij} = \sum_{k} F_{ik} F_{jk}$$
$$L_{a}^{style} = \frac{1}{C^2} \sum_{ij} (G_{ij}^{A} - G_{ij}^{T})$$
$$\alpha L_{c} + \beta L_{a}$$

• No loss is computed at this layer

Architecture

Classification network: SmallNet

- Conv with 16 channels and 3x3 filters. Relu activations.
- Batch normalization.
- Max pooling with 2x2 filters and 2x2 stride.
- Conv with 32 channels and 3x3 filters. Relu activations.
- Conv with 32 channels and 3x3 filters. Relu activations.
- Batch normalization.
- Max pooling with 2x2 filters and 2x2 stride.
- Fully connected with output dimension 1024. Dropout.
- Fully connected layer with output dimension 2.

- Conv with 16 channels and 3x3 filters. Relu activations.
- Conv with 16 channels and 3x3 filters. Relu activations.
- Conv with 16 channels and 3x3 filters. Relu activations.
- Conv with 16 channels and 3x3 filters. Relu activations.
- Conv with 3 channels and 3x3 filters.

- Tiny-ImageNet-200 (500 images from dogs and 500 images from cats) 64x64x3
- MNIST, 1000 images from each class 28×28×1

Results

Dogs vs Goldfish		
Augmentation	Val. Acc.	
None	0.855	
Traditional	0.890	
GANs	0.865	
Neural + No Loss	<u>0.915</u>	
Neural + Content Loss	<u>0.900</u>	
Neural + Style	<u>0.890</u>	
Control	0.840	

Table I: Quantitative Results on Dogs vs Goldfish

Dogs vs Cat		
Augmentation	Val. Acc.	
None	0.705	
Traditional	0.775	
GANs	0.720	
Neural + No Loss	<u>0.765</u>	
Neural + Content Loss	<u>0.770</u>	
Neural + Style	<u>0.740</u>	
Control	0.710	

Table II: Quantitative Results on Dogs vs Cats

MNIST 0's and 8's		
Augmentation	Val. Acc.	
None	0.972	
Neural + No Loss	<u>0.975</u>	
Neural + Content Loss	0.968	
Table III: MNIST		

Examples

Figure V: Goldfish sample I

Figure VI: Goldfish sample II

Examples

First Source

Augmented Image

Figure VII: Dog sample I

First Source

Second Source

Augmented Image

Figure X: Dog sample IV

Examples

First Source

Second Source

Augmented Image

Figure VIII: Dog sample II

First Source

Second Source

Augmented Image

Figure IX: Dog sample III