

Problem Statement

Architecture

Data and Row Extraction

Experiment and Results

Conclusion and Future Works

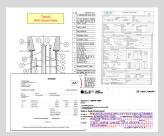
Department of Mechanics & Mathematics TableNet: Deep Learning model for End-to-End Table detection and Tabular Data Extraction from Scanned Document Images

Novosibirsk State University

Muhammad Hami Asmai Bin Ismail

Advisor: Prof. Dmitry Tailakov,. Digital Field Technologies

Objective: The presentation is to discuss in detail, about a novel paper written by Shubham Paliwal, Vishwanath D, Rohit Rahul, Monika Sharma and Lovekesh Vig (TCS Research, New Delhi)



General Problem

Problem Statement

- Architecture
- Data and Row Extraction
- Experiment and Results
- Conclusion and Future Works

- Unstructured documents.
- Tabular information.
- Examples:
 - Hand-written forms.
 - Invoices.
 - Technical datasheets.
 - Bill of Materials.
 - Others.

Sub-Problems

Tabular data detection can be broken down into 2 sub-problems

Problem Statement

Architecture

Data and Row Extraction

Experiment and Results

Conclusion and Future Works

Department of Mechanics & Mathematics

1 - Table Detection

Recognize and locate the table.

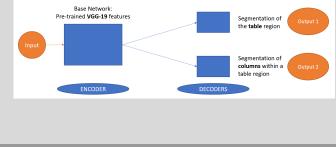
2 - Table Structure Recognition

Identify the columns and data inside.

Problem Statement

Architecture

Data and Row Extraction


Experiment and Results

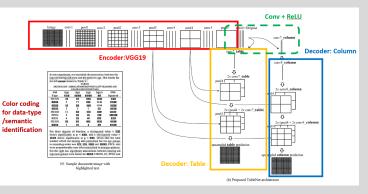
Conclusion and Future Works

Department of Mechanics & Mathematics

Model Implementation General model representation

- The aim is to solve the 2 sub-problems simultaneously, unlike most other models.
- The implementation is based on encoder-decoder model using multi-task approach.

Detailed Architecture End-to-end architecture of TableNet


Problem Statement

Architecture

Data and Row Extraction

Experiment and Results

Conclusion and Future Works

Data Extraction

How the data extracted from tables and columns?

- Problem Statement
- Architecture
- Data and Row Extraction
- Experiment and Results
- Conclusion and Future Works

Department of Mechanics & Mathematics

Generated Masks

used to filter out the table column regions.

Tesseract OCR

used to extract texts inside the table column regions.

Regular Expressions

used to determine data type or semantic feature.

Problem Statement

Architecture

Data and Row Extraction

Experiment and Results

Conclusion and Future Works

Department of Mechanics & Mathematics **Row Segmentation** *How the rows are identified?*

3 Row Segmentation Rules

- In most tables for which line demarcations are present, the line = row.
- 2. If a row spans multiple lines, the line with max non-blank columns = new row.
- 3. If all columns filled and no line demarcations, again each line = row.

	Part Number	Short Description	Long Description
Start of Start of row 2	X12345	PUMP, CENTRIFUGAL,	Unused Surplus SPX Clyde Union FK14/18, API 610,
		SINGLE STAGE	OH2 pump with the following features: • Case material • Single stage • impeller • suction flange • discharge flange • CW Rotation • Weight 8,500 lbs Dims 104"Lx104"LX98"H
	342-99A	VALVE, BALL, 2"X1500#,	1" CLASS 1500 FLOATING BALL VALVE
		FLOATING, LEVER, SS316	BOITED BONNET, TWG-PIECE BODY, FLOATING BALL FULL BORE, BLOWOUT PROOF STEM FIRE SARE AND ANTI STATIC STAINLESS STEEL BALL ASTM A216 WCB, A351 CF8, A351 CF8M, A351 CF3, A351 CF3M, A351 CN7M

Experiment Parameters

Dataset and Computing Power

Problem Statement

Architecture

Data and Row Extraction

Experiment and Results

Conclusion and Future Works

Department of Mechanics & Mathematics Marmot table recognition dataset - total of 1016 documents (509 English documents), annotated for training.

Computing Power

Dataset

Intel(R) Xeon(R) Silver CPU having 32 cores and RAM of 128 GB Tesla V100-PCIE-1 GPU with 6GB of GPU memory.

Experiment Parameters

Running Parameters by Phases

- Problem Statement
- Architecture
- Data and Row Extraction
- Experiment and Results
- Conclusion and Future Works

Department of Mechanics & Mathematics

- Initial Phase:
 - Table to column computation ratio = 2:1.
 - 500 iterations with batch size of 2.
- Next Phases:
 - Table to column computation ratio = 1:1.
 - 5000 iterations with batch size of 2, learning rate 0.0001.
 - Use of Adam Optimizer (Beta1=0.9, Beta2=0.999, Epsilon=1e-08).

Experiment Result *Comparative table of Score*

Problem Statement

Architecture

Data and Row Extraction

Experiment and Results

Conclusion and Future Works

Department of Mechanics & Mathematics

Model	Recall	Precision	F1-Score
TableNet + Semantic Features (fine-tuned on ICDAR)	0.9628 0.9621	0.9697 0.9547	0.9662
TableNet + Semantic Features			
TableNet	0.9501	0.9547	0.9547
DeepDeSRT [8]	0.9615	0.9740	0.9677
Tran et al [10]	0.9636	0.9521	0.9578

TABLE I: Results on Table Detection

Model	Recall	Precision	F1-Score
TableNet + Semantic Features (fine-tuned on ICDAR)	0.9001	0.9307	0.9151
TableNet + Semantic Features	0.8994	0.9255	0.9122
TableNet	0.8987	0.9215	0.9098
DeepDeSRT [8]	0.8736	0.9593	0.9144

TABLE II: Results on Table Structure Recognition & Data Extraction

Conclusion Conclusion of the experiment

- Problem Statement
- Architecture
- Data and Row Extraction
- Experiment and Results
- Conclusion and Future Works

- TableNet is a novel deep learning model trained on dual tasks of table detection and structure recognition in an end-to-end fashion.
- TableNet is the first model that solves the two sub-problems simultaneously.
- Data type or semantic feature identification can improve accuracy.

Future Works *Possible improvements identified by the author*

- Problem Statement
- Architecture
- Data and Row Extraction
- Experiment and Results
- Conclusion and Future Works

- Possible expansion of the algorithm by introduction of a third branch to include row identification.
 - This requires manual annotation exercise.
- Inclusion of other type of semantic knowledge.
 - Example: currency, country, city.