SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text

Processing
Taku Kudo, John Richardson

presented by Daria Pirozhkova
NSU

April 13, 2021

1/13

1. Introduction
2. Tokenization's types
3. Tokenization algorithms

4. SentencePiece

2/13

Introduction

What is subword tokenization?

Tokenization is the task of splitting a sequence of text into units with semantic meaning.
These units are called tokens, and the difficulty in tokenization lies on how to get the
ideal split so that all the tokens in the text have the correct meaning, and there are no
left out tokens.

What problem does it solve?

| A

Example: "I love chocolateandcheese”
Word tokenization: "I, "love”, " chocolateandcheese”
Subword tokenization: "I", "lo","ve", "choco”,"1a", " te","and”, "chee", se"

Language specification: Japanese and Chinese

Introduction 3/13

® Word level tokenization: "faster”

e Character level tokenization: f-a-s-t-e-r
e Subword level tokenization: "fast”, "er”

Tokenization's types 4/13

Tokenization algorithms

BPE

BPE creates a base vocabulary consisting of all symbols that occur in the set

of unique words and learns merge rules to form a new symbol from two symbols of
the base vocabulary. It does so until the vocabulary has attained the desired
vocabulary size.

AABABCABBAABAC ADDCDBADAC EDCDBEAC
AA-2 AD-2 AD=E

AB-4 AB=D DD-1

BA-3 DC-1

BC-1 CD-1

CA-1 DB-1

BB-1 DA-1

AC-1 AC-1

Table: Table caption

Tokenization algorithms 5/13

Tokenization algorithms

Unigram

Unigram algorithm defines a loss over the training data given the current vocabulary.
Then, for each symbol in the vocabulary, the algorithm computes how much the overall
loss would increase if the symbol was to be removed from the vocabulary.

Unigram then removes p percent of the symbols whose loss increase is the lowest,

i.e. those symbols that least affect the overall loss over the training data.

This process is repeated until the vocabulary has reached the desired size

Zlog(Nop m))

zeS(z;)

Table: Table caption

Tokenization algorithms 6/13

SentencePiece

e SentencePiece is a language-independent subword tokenizer and detokenizer
designed for Neural-based text processing. (including Neural Machine Translation)

e SentencePiece implements two subword segmentation algorithms, byte-pairencoding
(BPE) and unigram language model.

® [t enables building a purely end-to-end system that does not depend on any
language specific processing.

SentencePiece 7/13

SentencePiece

SentencePiece comprises four main components:

® Normalizer: a module to normalize semantically equivalent (unicode characters into
canonical forms).

® Trainer
® Encoder
® Decoder

Lossless tokenization:
Decode(Encode(Normalize(text))) = Normalize(text).

SentencePiece 8/13

SentencePiece

® vocabulary size:lt reserves vocabulary ids for special meta symbols, e.g., unknown
symbol (unk), BOS (s), EOS (/s) and padding (pad).

® pormalization rule name: customizable character normalization

SentencePiece 9/13

import sentencepiece as spm

params = (* ——input=input.txt '
f—-model_prefix=spm_*
r--vocab_size=1000")

spm.SentencePieceTrainer. Train(params)

sp = spm.SentencePieceProcessor()
sp.Load(’ spm.model”)

print(sp.EncodeAsPieces(” Hello_world. "))
print(sp.EncodeAslds(’ Hello_world.’))
print(sp.Decodelds([151, 88, 21, 887, 6]))

Figure 4: Python API usage (The same as Figure 1.)

import tensorflow as tf
import tf_sentencepiece as tfs

model = tf.gfile.GFile(” spm.model”’, * rb’).read()

input_text = tf.placcholder(tf string. [None])

ids, lens = tfs.encode(input_text, model_proto=model,
out_type=tf.int32)

output_text = tfs.decode(ids, lens, model_proto=model)

with tf.Session() as sess:
text=["Hello_world.’, "New_York’]
ids_, lens_, output_text_ = sess.run([ids, lens, output_text
1. feed_dict={input_text:text})

Figure 5: TensorFlow API usage

10/13

SentencePiece

Lang pair | setting (source/target) # vocab. BLEU

ja—en | Word model (baseline) 80k/80k | 28.24
SentencePiece 8K (sharea) | 29.55
SentencePiece w/ pre-tok. | 8K (shared) | 29.85
‘Word/SentencePiece 80k/8k 27.24
SentencePiece/Word 8k/80k 20.14

en—ja | Word model (baseline) 80k/80k | 20.06
SentencePiece 8k (sharea) | 21.62
SentencePiece w/ pre-tok. | 8K (share) | 20.86
‘Word/SentencePiece 80k/8k 21.41
SentencePiece/Word 8k/80k 19.94

Table 1: Translation Results (BLEU(%))

SentencePiece

time (sec.)

Task Tool Pre-tok. | Japanese | English
Train | subword-nmt yes 56.9 54.1
SentencePiece yes 10.1 16.8
subword-nmt no 528.0 94.7
SentencePiece no 217.3 21.8

Seg. subword-nmt yes 23.7 28.6
SentencePiece yes 8.2 20.3
subword-nmt no 216.2 36.1
SentencePiece no 59 20.3
Pre-tokenizaion KyTea(jayMosesien) 24.6 15.8

Table 2: Segmentation performance. KFTT corpus (440k
sentences) is used for evaluation. Experiments are executed
on Linux with Xeon 3.5Ghz processors. The size of vocabu-
lary is 16k. Moses and KyTea tokenizers are used for English
and Japanese respectively. Note that we have to take the time
of pre-tokenization into account to make a fair comparison
with and without pre-tokenization. Because subword-nmt is
based on BPE, we used the BPE model in SentencePiece. We
found that BPE and unigram language models show almost
comparable performance.

11/13

Taku Kudo and John Richardson (2018)

SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text
Processing

CoRR

SentencePiece

12/13

Thank you for your attention

	Introduction
	Tokenization's types
	Tokenization algorithms
	SentencePiece

