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* Machine learning is just classical algorithm + training data.

¢ Training data are a set of information of the form (x, y), where x is
the input and y is the output.

* Training data can be seen as a restricted form of advice.

+ Training data + Advice
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Computational Power of Data

* We define the complexity class of classical algorithms with data
as follows. Given a language L in the complexity class.

* There exists a probabilistic Turing machine M that takes input x
of size n along with a training data of size poly(n):
I = {G )}
where x; is sampled from some distribution &, over all inputs of
sizenandy; = lifx; € Lelsey,=0.

* M runs for polynomial time on all input x.

For all x € L, M outputs 1 with probability > 2/3.
For all x ¢ L, M outputs 1 with probability < 1/3.
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Computational power of Data

¢ Classical algorithms that could obtain and learn from data
can be computationally more powerful.

Quantum Computation
(BQP)

Classical
ML
Algorithm
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Power of Data: Implications

1. Classical ML algorithm can learn to solve some quantum many-
body problems (by learning from data obtained in nature).

2. Classical ML algorithm can rival existing quantum ML even for
learning quantum models (that are hard to simulate classically).

We will focus on the second implication for this talk.
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Characterizing quantum advantage in learning problems

* People often expect deep quantum neural network or
classically-hard quantum kernel function to yield quantum
advantage in machine learning.

* But this may not be true due to the availability of data.

* When would existing quantum models be void of
quantum advantage?
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Quantum Model

* The quantum model we consider:
1. Xx: aclassical vector
2. (%) = Upge@) 0N (0" Upye @)
3. U: a unitary evolution applied on p(x)
4. O: an observable measured on Up(x)U f

* This also corresponds to computation that can be
performed by quantum computers.
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Example Quantum Model

* Quantum neural networks consist of
> embedding input x; into quantum Hilbert space p;

> unitary evolution Unny
> obtain expectation value of observable O

¢ Quantum kernel methods consist of
> embedding input X; into quantum Hilbert space p;
> training a kernel method with kernel function

k(x;, xj) = Tr(pipj)
3

A useful fact: Quantum kernel method is equivalent to training an arbitrarily deep
quantum neural network that measures any observable at the end.
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Machine Learning Model

« Consider a training data {x', Tr(QOUp(x")U™)}¥_,, and we train a

=1
classical neural network f(x) with large hidden layer to minimize
N

min AR(f) + Y. Iftx’) = THOUp(xHUM| 12
f

i=1
* The trained neural network [1, 2] is equivalent to
N N N
fx)=Tr U*OUZ Z Z kCe, XYKTK + D)5 kG, x¥)p(ek) |,

i=1 j=1 k=1
for k(x, x): a kernel function, K,j = k(x',x’),and 2 > 0.

* Also holds for more traditional ML models (e.g., kernel SVM) as well as
quantum kernel methods.
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Is this Quantum Model Learnable?

e Quantum model: x = p(x) — measure UTOU

¢ Machine learning model: defines geometry on input x
Ky = k(x', ) = Y g,
where i, j are taken over all training data.
« Define s, (UTOU) = Tr(A(UTOU) @ (UTOU)) > 0,

where A = E (K_l)ijp(xi) ® p(x/) .
i

o If sK(UTOU) is small, then the ML model can learn to predict
the quantum model well.
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Visualize S,(0Y)

ML model: K, Kj; — s;, 54
Quantum model: U:Ol Ui, U;OZUZ, U;03U3

ML model | ML model Il
Quantum * Quantum
P eds _5"7'*‘” * model 1 model 1
rediction: good
\‘. Quantum * Quantum
Quantum model 3 O model 3
model 2 model 2
s: large
Prediction: bad

Plotting the norm ball for s; and s5;;
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Geometric difference

« Consider two ML models K, K. The corresponding sg (OY) and s¢ (OY)
are two different squared norms defined on the space of observables.

. SKI(OU) and us(OU) can be related through

ML model | ML model I

sg, < g(Ki | |K2)25K2, = et

where g(K; || K3) =4/ ||\/K2K1_1\/ Ko 2 1.

: - _ 2
» There exists data set that satisfies sg, = g(K; [1K5) Sk,

o If g(K || K,) is small, then K; will always have a similar or smaller model

complexity compared with K,. (Hence K; would predict similar or better)
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Geometric difference for accessing quantum advantage

« Consider goq = g(K €11 K9): geometric difference between classical ML

model and quantum ML model, e.g., quantum kernel SVM.

o If gcqis small, then classical ML will predict sirhilar or better than

quantum ML for learning any quantum model UTOU.

Classical ML Quantum kernel (QK)
®
Embed into
quantum 5
@ @% Hilbert space
@ :

g measures the geometric deim, 4 6]
difference, e.g., betw. A SN 4 m”g Setspace
and =, hing se et size)
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ric difference for accessing quantum advantag

« Consider 8co = g(KC| |KQ): geometric difference between classical ML

model and quantum ML model, e.g., quantum kernel SVM.

« If gcq is large, because there exists data set that satisfies s¢ = géQsQ, we

have s >? ) implying a prediction advantage using the quantum ML.

Classical ML Quantum kernel (QK)
@@ /-\
Embed into
@ ® Hil‘:aa:t:p:ce :

g measures the geometric
difference, e.g., betw. .
and <. "G set sizg)
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Quantum prediction advantage
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Dissecting quantum prediction advantage
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Limitations of Quantum Kernel Methods
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When the quantum states p(x[) for the training set span a large dimension
quantum Hilbert space, all inputs are too far apart, so

K%~ 1 and 8co =1/ \/Kollo = 1.

This means classical ML can often compete or outperform quantum kernel
methods in learning any quantum models.

One could rigorously show that for simple quantum models, quantum kernel
need exponential number of data, while classical ML only need linear.

We see classical ML outperforming quantum kernel throughout numerics.

Prediction error bound for QK: E, | g(x) — Tr(0Yp(x))| < @‘1 wh k’g(]\:m’]




Proposed Solution

¢ Large quantum Hilbert space
dimension makes quantum ML
suffers more than classical ML.

* Projects quantum states back to
classical space, e.g. using reduced
observable or classical shadow [1].

* Define kernel in the classical space.

* We call this the projected quantum
kernel (PQK).
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Classical ML Quantum kernel (QK)
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Projected quantum kernel (PQK)
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Projected quantum Kernel - PQK
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PQK requires quantum computer to
compute (by going through QK).

PQK results in much higher geometric
difference. (because QK has g = 1)

Simple-to-prove rigorous advantage
in a learning problem based on
discrete logarithm [1].

+1,
(x) =
y(x) { L

The proof that QK can learn the
above problem is much more
complicated [1].

log, (x) € [s, s + %‘]
log, () & [s,5 + %,3]

g measures the geometric

Classical ML Quantum kernel (QK)
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Experiments




Experiments - Fashion-MNIST
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- MNIST is too easy (can predict well with one pixel) and overused.
- Fashion-MNIST is a harder alternative with the same format.

- Focus only on binary classification (dresses vs shirt)
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Experiments - Embedding Strategy

- First map each image to n-dimensional vector by PCA.
- Three (3) different embedding strategies used:

- E1: Separable Rotation circuit

n=3

= Bx(z1)p=

— RX(g;Q) —

— RX($3) —_
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Experiments - Embedding Strategy

- E2: 1QP circuit (by IBM)
n=3

- H [ RZ(x) —H RZ(x) |—
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Experiments - Embedding Strategy

+ E3: Hamiltonian circuit

n=3

— e—itH(:I:) -

H(x) = )" x(0; 034.)

I
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- Dataset generated by quantum process: replacing the original
labels with output from hard-to-simulate Hamiltonian evolution.

( Ioca’\lﬁga::erfator
m @i d 4 ﬁ 0.7827
CB I (o @ " (original: 3)

0.3213
(original: 6)
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Classical ML methods:

- Random Forest

- Gradient Boosting

- Adaboost

- Gaussian kernel

- Linear model

- Convolutional neural network

- Feedforward neural network - All hyper-parameters were
properly tuned and report the best model.
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1. As dimension increases, geometric difference for QK decreases.
2. Small geometric difference results in similar to or underperform classical ML.
3. PQK projects to small dimensional space, but have large geometric difference.

n (systom size)



PQK (E1): g - small PQK (E2): g - moderate

PQK (E3): g - large

09
-, P ¥
»08 . e T el SW e L
3
§ .
s
8 ey
§,, At | |
§ \
g i
]
gos R
- -
o5 | _Randomguessing Random guessing. Random guessing
a8 1 1w 2 u » 4« 8 1 1w W u 2 4 8 12 18 2 u
n (system size) n (system size) n (system size)

—aA— Best Classical ML (N=100) —&= Proj. Quantum kernel (N=100)
Best Classical ML (N=600) —m— Proj. Quantum kernel (N=600)

=== Quantum kernel (N=100)
------ Quantum kernel (N=600)

1. When geometric difference is large, data sets exists with large prediction advantage.
2. One can see significant advantage using quantum ML for these data sets.
3. BQP should still be larger than P/poly (hence any classical ML with data).
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Conclusion




Conclusion

- Data provide computational power that enables classical ML
algorithms to become stronger than one expects.

- Classical ML can rival quantum ML and could outperform
existing quantum ML on quantum tasks.

- However, quantum ML should still be stronger than classical ML
(existing QML are not great).

- Quantum advantage in prediction accuracy is still possible -
more investigations are needed to justify this claim.
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Questions?
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