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Recommendation tasks

A recommender system can be viewed as a search ranking system, where:

the input query is a set of user and contextual information;

the output is a ranked list of items.

Given a query, the recommendation task is to find the relevant items in a
database and then rank the items based on certain objectives, such as
clicks or purchases.
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Memorization vs Generalization

One challenge in recommender systems, similar to the general search
ranking problem, is to achieve both memorization and generalization.

Memorization

learning the frequent co-occurrence of items or features and exploiting
the correlation available in the historical data;
Ability to remember training data;
Tends to recommend best possible items.

Generalization

based on transitivity of correlation and explores new feature
combinations that have never or rarely occurred in the past;
Ability to learn from training data;
Tends to improve the diversity of the recommended items;
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Memorization vs Generalization

Memorization: ”Seagulls can fly”, but ”can penguin fly?”

Generalization: ”Animal with wings can fly”, but penguin can’t!
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Memorization: The Wide Component

The Wide Component is a generalized linear model y = wT x + b,
trained on sparse and high-rank features.

The main idea is to use cross-product transformation, which is defined as:

φk(x) = Πd
i=1x

cki
i , cki ∈ {0, 1}

where cki is a boolean variable that is 1 if the i-th feature is part of the
k-th transformation φk , and 0 otherwise. More simple, it’s like new
features using AND operation.

This captures the interactions between the binary features, and adds
nonlinearity to the generalized linear model.
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Generalization: The Deep Component

The deep component is a simple feed-forward deep neural network.

The main idea is to convert high-dimensional categorical features into a
low-dimensional and dense real-valued vector, often referred to as an
embedding vector.

These low-dimensional dense embedding vectors are then fed into the
hidden layers of a neural network in the forward pass.

For other features (for example, numerical), embedding layers are not used.
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Wide vs Wide & Deep vs Deep

Memorization vs Memorization & Generalization vs Generalization
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Network Architecture
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Joint training

The wide component and deep component are combined using a weighted
sum of their output log odds as the prediction, which is then fed to one
common logistic loss function for joint training.

There is a distinction between joint training and ensemble:

Ensemble

individual models, which are trained separately;
predictions are combined only at inference time;
each individual model size usually needs to be large;

Joint training:

optimizes all parameters simultaneously by taking both the wide and
deep part;
the wide part only needs to complement the weaknesses of the deep
part with a small number of cross-product feature transformations,
rather than a full-size wide model;
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Joint training

Joint training of a Wide & Deep Model is done by backpropagating the
gradients from the output to both the wide and deep part of the model
simultaneously using mini-batch.

For a logistic regression problem, the model’s prediction is:
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Apps recommendation task

The task is to develop a recommender system productionized on Google
Play, a mobile app store with over one billion active users and over one
million apps.

Each example corresponds to one impression. The target is app
acquisition:

1, if the impressed app was installed
0, otherwise
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Apps recommendation pipeline
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Experiment Results
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Serving latency
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Conclusion

Memorization and generalization are both important for recommender
systems. Wide linear models can effectively memorize sparse feature
interactions using cross-product feature transformations, while deep
neural networks can generalize to previously unseen feature interactions
through low dimensional embeddings.

The Wide & Deep learning model is able to combine the strengths of both
types of model. Online experiment results showed that the Wide & Deep
model led to significant improvement on app acquisitions over wide-only
and deep-only models.

It should also be noted that this approach can be used not only for
recommender systems. Wide & Deep networks are also used in other
classification problems, as well as regression, for example, in problems of
predicting the expected travel time (ETA).
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