

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics Recognition of Different Objects of Oilfield Infrastructure by Machine Learning Methods

Novosibirsk State University

Muhammad Hami Asmai Bin Ismail

Advisor: Prof. Dmitry Tailakov,. Digital Field Technologies

Objective: The study aimed to implement computer vision and deep learning architectures to identify objects that appears on as-built engineering piping and instrumentation diagram (PID). The algorithm then tasked to classify and create parent-child structure between the objects identified based on ISO14224 standard.

Problem Statement Why is is important?

Overview

- Tools
- Methodology and Activities
- Preliminary Results
- Challenges and Next Plan

Department of Mechanics & Mathematics

- Manual and laborious work to identify and record each plant asset into database manually.
- General accurate source and cheapest way to record is to refer as-built engineering drawings, which is still very time consuming.
- Example of plant assets:
 - Manual valves.
 - Instruments (Transmitters, Actuators).
 - Turbomachineries (Compressors, Turbines).
 - Static Equipment (Tanks, Vessels)
 - Electrical Items (Control Panels, Transformers).

Semester 1 Recap All the previously done tasks in Semester 1

Overview

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

1 - Literature Review

Perform detailed review for 17 related work

2 - Hardware Setup

All high GPU computation were being prepared to run in NSU Lab Facilities remotely

3 - Data Collection

Piping and instrumentation drawings (PID) data were collected in addition to ISO14224 Classification data

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics Hardware Computer Specifications

Personal Laptop

CPU AMD Ryzen 7 2700U w/ Radeon Vega Mobile Gfx 2.20GHz, 16GB RAM, 476GB Storage with Windows OS

Remote Lab Computer

GPU NVidia Quadro M4000 with 8GB GPU Memory, CPU Intel Xeon(R) E5-1620 v4 with 31GB RAM, OS -Ubuntu 16.04.6

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics **Software** Applications Specifications

Python

Python 3.6.12 and Python 3.8.9 installed for different purposes

Jupyter Notebook

Jupyter Notebook on lab computer forwarded to specific port and access using local web browser

Tensorflow and Pytorch

Installed Tensorflow 2.3.1 with CUDA 10.1. Pytorch 1.7 yet to be installed.

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

Architectures

Computer Vision Existing Models to be used

YOLOv3

You Only Look Once (YOLO) version 3 by Joseph Redmon - this has been implemented

Faster R-CNN

Faster R-CNN (Region-based Convolutional Neural Networks) considered to be used to detect smaller look-alike objects

YOLOv5

Ultralytics new version of YOLO with Pytorch implementation, recently released on July 2020.

Data Conditioning Processing of raw data

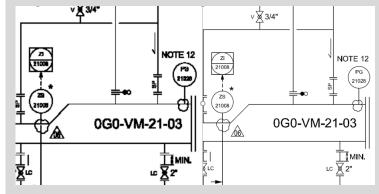
- Overview
- Tools
- Methodology and Activities
- Preliminary Results
- Challenges and Next Plan

Department of Mechanics & Mathematics

- 1. Original data comes in high-resolution PDF format, some of them having multiple pages.
- The data then being split into several snip manually using Snipping Tool on Windows (average 4 sections per drawing page).
- 3. The snipped image saved into PNG format for annotation activities.
- Note: Bulk conversion of PDF to PNG using Adobe produced a low quality output. Any suggestions?

Data Conditioning Processing of raw data

Overview


Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics Quality comparison between full conversion vs snipping

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

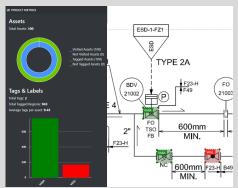
Data Annotation Labelling of training data

- Tool used: Visual Object Tagging Tool (VoTT) from Microsoft
- Only 2 classifications is currently being used:
 - 1. Ball Valve (VABA)
 - 2. Globe Valve (VAGL)
- Other classifications will be used (target total 5-20):
 - Centrifugal Pump (PUCE)
 - Heat Exchanger (HEST)
 - Pig Launcher (VEPT)

Data Annotation Labelling of training data

Overview

Tools


Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

Overview of current annotated data

Detection Activities Model Implementation into Dataset

Overview

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

Detection 1 - 16 Feb 2021

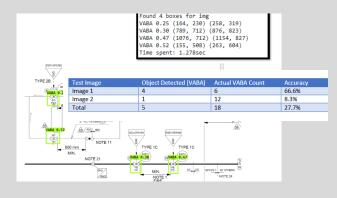
Only 14 images used for training. Only 1 class used (VABA). Test data is only 2 images. Training time taken: 30 minutes with 102 epochs

Detection 2 - 18 Mar 2021

100 images used for training. 2 classes was used: VABA VAGL. Test data is 10 images. Training time taken: 30 minutes with 76 epochs

Tools

Methodology and Activities


Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

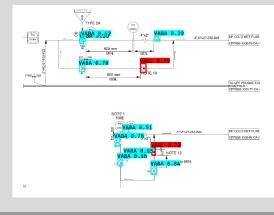
Detection 1 *First detection to test the procedure*

Objective: To understand the end to end process for image recognition activities using YOLO with small amount of data

Tools

Methodology and Activities

Preliminary Results


Challenges and Next Plan

Department of Mechanics & Mathematics

Detection 2

Detection using decent training data count with 2 classes

Objective: To perform a better detection using adequate amount of training data. Also to see how the 2 classes affect the detections

Tools

Methodology and Activities

Preliminary Results

Challenges and Next Plan

Department of Mechanics & Mathematics

Detection 2

Detection using decent training data count with 2 classes

Test Image	Object Detected (VABA)	False Detection of VABA	Actual VABA Count	Accuracy
Image 1	4	0	15	27%
Image 2	7	1	7	86%
Image 3	8	3	8	63%
Image 4	15	4	15	73%
Image 5	8	2	8	75%
Image 6	7	3	7	57%
Image 7	15	1	16	88%
Image 8	0	9	1	-900%
Image 9	2	1	8	13%
Image 10	2	7	13	-38%
TOTAL	68	31	98	38%

VAGL

Test Image	Object Detected (VAGL)	False Detection of VAGL	Actual VAGL Count	Accuracy
Image 1	0	0	0	N/A
Image 2	2	0	2	100%
Image 3	0	0	1	0%
Image 4	1	0	3	33%
Image 5	0	0	1	0%
Image 6	1	0	2	50%
Image 7	6	0	7	86%
Image 8	0	0	1	0%
Image 9	0	0	1	0%
Image 10	0	0	2	0%
TOTAL	10	0	20	50%

Challenges Challenges faced during experiments

- Overview
- Tools
- Methodology and Activities
- Preliminary Results
- Challenges and Next Plan

Department of Mechanics & Mathematics

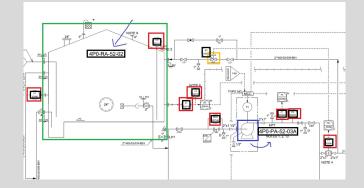
- Data preparation and annotation is very time consuming.
 - Solution plan: annotate all objects is scope when reviewing a single image instead of folder based. Reduce classes in scope.
- Detection of small objects using YOLO version 3.
 - Solution plan: use Faster RCNN or YOLO version
 5
- Challenges in determining OCR region to extract the object ID from drawing and match to object.

Next Strategy Plan to solve Challenge #3

Overview

- Tools
- Methodology and Activities
- Preliminary Results
- Challenges and Next Plan

Department of Mechanics & Mathematics


- 1. Find bounding box for the OCR region by applying filters ,erode dilate, then find contours.
- 2. Apply OCR on the bounding box.
- Match OCR bounding box to the Object bounding box using nearest Manhattan / euclidean distance of box center

Strategy Mockup Illustration of the strategy

- Overview
- Tools
- Methodology and Activities
- Preliminary Results
- Challenges and Next Plan

Department of Mechanics & Mathematics

• Black - OCR Box, Colour - Object Box

AssetMiner

Read-only view, generated on 27 Apr 2021

ACTIVITIES	ASSIGNEE EH START DUE %	n 2022 Feb 2022 Mar 2022 Apr 2022 17 24 31 07 14 21 28 07 14 21 28 04 11 18 25
Thesis Writing:	- 01/Sep 31/Mar 76%	Thesis Writing:
 Literature Review 	Hami A 01/Sep 13/Nov 99%	
2 Paper Collection	Hami A 01/Sep 16/Oct 100% Paper Collection	
3 Summarize	Hami A 01/Oct 13/Nov 100% Paper Reading & Summarize	
4 🧭 Final Write-up	Hami A 0%	
O Methodology	Hami A 01/Dec 31/Dec 92%	
6 🥏 Initial Draft	Hami A 01/Dec 31/Dec 100% Initial Draft	
7 🐼 Revised Draft	Hami A 0%	
8 🔗 Final Draft	Hami A 0%	
⊘ Abstract	Hami A 0%	
10 📀 Initial Draft	Hami A 0%	
11 🐼 Revised Draft	Hami A 0%	
12 Sinal Draft	Hami A 0%	
13 🐼 Results	Hami A 0%	
14 📀 Final Thesis	Hami A 01/Mar 31/Mar 0%	Final Thesis
Data Collection & Labelling:	- 02/Nov 03/May 60% Data Collection & Labelling:	
16 📀 Data Collection (EPCC1)	Hami A 02/Nov 30/Jan 100% Data Collection (EPCC1)	
17 📀 Data Labelling (EPCC1)	Hami A 01/Jan 03/May 30%	
18 🕢 Data Collection (EPCC2)	Hami A 0%	
Model Development & Training:	- 04/Feb 16/Jul 26%	
20 📀 Object Detection (YOLOv3)	Hami A 04/Feb 03/Mar 100% Object Detection (YOLOv ³)	
21 📀 Detection 1 & Analysis	Hami A 16/Feb 16/Feb 100% Detection 1 & Analysis	
22 📀 Detection 2 & Analysis	Hami A 18/Mar 18/Mar 100%	
23 🐼 Tag Region Detection	Hami A 12/Apr 26/Apr 30%	
24 OCR the Tag Region	Hami A 26/Apr 07/May 15%	
25 🐼 Detection 3 & Analysis	Hami A 04/May 04/May 04/May 0%	
26 Object Detection (Faster RCNN)	Hami A - 03/May 17/May 0%	
27 🐼 Detection 4 & Analysis	Hami A 18/May 18/May 0% Otelection 4 & Analysis	
28 Object Detection (YOLOv5)	Hami A - 17/May 31/May 0%	
29 🐼 Detection 5 & Analysis	Hami A 01/Jun 01/Jun 0% Ottection 5 & Analysis	
30 🧭 Tag Region to Object Region Matching	Hami A - 01/Jun 18/Jun 0%	
31 🧭 Tag to Parent Tag Matching	Hami A 18/Jun 30/Jun 0%	
32 🕢 Detection 6 & Analysis	Hami A 01/Jul 01/Jul 0% Detection 6 & Analysis	
33 O Customize output CSV	Hami A 01/Jul 16/Jul 0%	

害 Instagantt