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What is diarization?

@ Diarization is the process of dividing the incoming stream into
homogeneous segments in accordance with the belonging of the
stream to one or another speaker.

@ Diaitarization answers the question "Who spoke when?"
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Recent Advantages. Modular speaker diarization systems

Audio Input Diarization Output
(RTTM)
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@ Deep Learning approaches(e. g. LSTM based)

@ Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs)
or DNNs

© Uniform segmentation
@ d-vectors
© DOVER
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Recent Advantages. Joint optimization for speaker
diarization

e Joint segmentation and clustering.A model called Unbounded
Interleaved-State Recurrent Neural Networks (UIS-RNN) was
proposed.

¢ Joint segmentation, embedding extraction, and resegmentation.
Region Proposal Networks (RPN).
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(a) Region proposal network (RPN) (b) Diarization by RPN
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Recent Advantages. Joint optimization for speaker
diarization

e Joint speech separation and diarization. Kounades-Bastian
proposed to incorporate a speech activity model into speech separation
based on the spatial covariance model with non-negative matrix
factorization. Neumann later proposed a trainable model, called online
Recurrent Selective Attention Network (online RSAN).

e Fully end-to-end neural diarization.
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Mixup-Breakdown Training

Mixy(a,b) 2 X-a+ (1 —A)-b
Breaky(a,b) £ (X -a,(1 - \) - b)

The Mixup-Breakdown (MB) strategy trains a student model fy, to provide
consistent predictions with the teacher model fy, of the same network
structure at perturbations of predicted separations from the input mixtures
(either labeled or unlabeled):

fos (Mixa (o (x;))) ~ Breaky(fo-(x;))
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Mixup-Breakdown Training

The semi-supervised learning mode with a labeled dataset and an unlabeled
dataset looks like this:
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Goals and objectives

Goal: improve the quality of diarization with Mixup Breakdown Training.
Objectives:

© implement the Mixup Breakdown Training
@ adapt the Mixup Breakdown Training to the diarization task

© analyze and select a suitable backbone
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Results

e Generated datasets: speaker + speaker, noise + speaker, 2 speakers +
noise.

e MBT v0.1 implemented

e The model was trained with the Mixup-Breakdown algorithm and the
ConvTasNet network as a student and a teacher model on two data
sets: speaker + speaker, speaker + noise.
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Further work

Tests on AMI dataset: MBT, TasNet, SpectralCluster, compare results

Consider options for replacing TasNet with newer models

Genralize the results by 3, 4, etc. speaker
Publish the code on GitHub
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