Meeting #2028
Updated by Evgeniy Pavlovskiy almost 7 years ago
25 minutes for one presentation. Each student has to present a research. Opened list of cutting-edge topics: |_.Topic|_.Link|_.Reporter|_.Scheduled| |ResNet, ResNeXt| K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016|*Petr Gusev*|1-nov| |Dynamic Word Embeddings|https://arxiv.org/abs/1804.07983| *Andrey Zubkov*|25-oct| | Capsule NN|Paper: https://arxiv.org/pdf/1710.09829, presentation: https://cedar.buffalo.edu/~srihari/CSE676/9.12%20CapsuleNets.pdf|*Klim Markelov*|25-oct| | MixUp | https://arxiv.org/pdf/1710.09412.pdf, ("AdaMixUp":https://arxiv.org/pdf/1809.02499.pdf in addition)| *Vitaly Poteshkin* |25-oct| | Variational Autoencoders || *Anastasia Malysheva*|1-nov| | ArcFace ||*Sergeyev Artem*|-| | UMAP | McInnes, Leland and John Healy (2018). “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction”. In: ArXiv e-prints. arXiv: "1802.03426 [stat.ML]":http://arxiv.org/abs/1802.03426|*Burgeot Guillaume*|-| | Siamese NN||*Roman Kozinets*|29-nov| | Quantum Semantics||*Chakrabathy Anik*|1-nov| | MobileNN||*Akilesh Sivaswamy*|8-nov| | Triplet Loss||*Mulley Loïc*|-| | Sobolev Training | https://arxiv.org/pdf/1706.04859|*Luchkina Anastasia*|3-dec| https://arxiv.org/pdf/1706.04859|| |Rapids AI |http://rapids.ai/ |*Juan Fernando Pinzon Correa*|15-nov| |Attentioned based LSTM|https://www.aclweb.org/anthology/D16-1058|**Munyaradzi Njera**|15-nov| |CycleGAN||*Leyuan Sheng*|3-dec| |RNN for Speech Recognition|? https://www.cs.toronto.edu/~graves/icassp_2013.pdf|*Yakovenko Olga*|-| |Bayesian Conditional Density Filtering|? https://arxiv.org/abs/1401.3632|*Lee Wonjae*|8-nov| |Deep Learning in Mobile and Wireless Networks: a Survey|https://arxiv.org/pdf/1803.04311.pdf|*Ravi Kumar*|15-nov| |tSNE|Maaten L., Hinton G. Visualizing data using t-SNE //Journal of machine learning research. – 2008. – Т. 9. – №. Nov. – С. 2579-2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html|*Razizadeh Omid*|29-nov| |Natural language based financial forecasting: a survey|Xing F. Z., Cambria E., Welsch R. E. Natural language based financial forecasting: a survey //Artificial Intelligence Review. – 2018. – Т. 50. – №. 1. – С. 49-73.|*Tsvaki Jetina*|29-nov| |Super-Resolution|Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf| *Siyoto Owen*|29-nov| |LIME (local interpretable model-agnostic explanations)|Ribeiro M. T., Singh S., Guestrin C. Why should i trust you?: Explaining the predictions of any classifier //Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. – ACM, 2016. – С. 1135-1144. https://arxiv.org/pdf/1602.04938v1.pdf|*Tagirova Elizaveta*|3-dec| |XNOR-Net|https://arxiv.org/pdf/1603.05279.pdf|*Potapova Polina*|8-nov| These students still didn't selected a paper to report: 1st year students # *Averyanov Evgeniy* # *Melnikov Arsentiy* # *Rogalsky Ivan* # *Urynbassarov Mukhtar* # *Machet Julien* 2nd year students # *Gyamerah Seth* # *Fishman Daniil* # *Kurochkin Evgeniy* # *Luchkina Anastasia*