Project

General

Profile

Seminars schedule » History » Revision 261

Revision 260 (Owen Siyoto, 2020-04-16 11:12) → Revision 261/552 (Owen Siyoto, 2020-04-16 11:13)

h1. Seminar "Big Data Analytics" 

 (sorted by later first) 

 h2. Schedule 2020, spring 

 Thursday, 16:20, -cab 0207 NSU new building, '-1' elevator floor-, online: https://zoom.us/j/910812617 

 h3. May, 2020 

 |7, #|*Ravi Kumar* Master 
 *Owen Siyoto* Master 
 *Owen Siyoto* Learning to interpret satellite images in global scale using wikipedia 
 *Oladotun Aluko* Coursework 
 *Alexander Rusnak* Coursework 
 *Vladislav Panferov* Coursework| 
 |14, #|*Kaivalya Pandey* Coursework 
 *Andrey Yashkin* Coursework 
 *Rohan Rathore* Coursework 
 *Sergey Garmaev* Coursework 
 *Dinesh Reddy* Coursework 
 *Elena Voskoboy* Coursework| 
 |21, #|*Alexey Korolev* Coursework 
 *Mohamed Nasser* End-to-End 3D Face Reconstruction with Deep Neural Networks 
 *Vlaidslav Panferov* You Only Look Once: Unified, Real-Time Object Detection 
 *Alexander Donets* Coursework 
 *Daria Pirozhkova* Coursework 
 *Rishabh Tiwari* Coursework| 
 |28, #|*Alix Bernard* Coursework 
 *Mukul Vishwas* Coursework 
 *Watana Pongsapas* Coursework 
 *Raphael Blankson* Coursework 
 *Abhishek Saxena* Coursework 
 *Nikita Nikolaev* Coursework| 

 h3. April, 2020 

 |2, #|[Optional] Daia Scientist - values of a professional| 
 |9 -2-, #|*Thibault Kollen* Flipout: Efficient pseudo-independent weight perturbations on mini-batches 
 *Richard Fambon* Tensor Networks 
 *Alexander Rusnak* GPT-2 
 *Dinesh Reddy* Brain Tumor Sementation Using Deep Learning by Type Specific Sorting of Images 
 *Alix Bernard* Deep Learning based Approach to Reduced Order Modelling 
 *Ravi Kumar* Complex Convolution. IEEE 
 *Olga Yakovenko* University of Pau| 
 |16 -9-, #|*Rohan Rathore* Layer-wise relevance propagation: an overview 
 *Antoine Logeais* Weight uncertainty in neural networks 

 
 *Owen Siyoto* Learning to interpret satellite images in global scale using wikipedia 
 *Abhishek Saxena* Blockchain for AI: Review and open research challenges 
 *Alexey Korolev* Bert-dst: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer 
 *Alexander Donets* Implicit weight uncertainty in neural networks| 
 |23 -16-, #|*Jetina Tsvaki* Understanding mixup training methods 
 *Jetina Tsvaki* Master 
 *Mukul Vishwas* 
 *Rishabh Tiwari* 
 *Geoffroy de Felcourt* Jasper: An end-to-end convolutional neural acoustic model 
 *Fishman Daniil* 
 *Mikhail Rodin* Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization| 
 |30, #|*Raphael Blankson* Towards quantum machine learning with tensor networks  
 *Vassily Baranov* Coursework 
 *Kalmutskiy Kirill* Coursework 
 *Mikhail Liz* Coursework| 

 h3. March, 2020 

 |5, #3137|-*Elena Voskoboy* Hybrid VAE for NLG- 
 *Mikhail Liz* Deep learning for symbolic mathematics 
 *Vassily Baranov* Distilling knowledge 
 -*Andrey Yashkin*- 
 *Sergey Garmaev* Reservoir Computing| 
 |12, #3138|*Oladotun Aluko* NASNet and AutoML 
 *Watana Pongsapas*    Deep learning: A Generic approach for extreme condition traffic 
 *Kirill Kalmutsky* Variational Quantum Circuits and Deep Reinforcement Learning 
 *Andrey Yashkin* Quantum circuit learning| 
 |19, #3139|*-Geoffroy de Felcourt-* 
 *Elena Voskoboy* Hybrid VAE for NLG 
 ~~25 min slot~~| 
 |26, #3190|*Omid Razizadeh* Reynolds Averaged Turbulence Modeling using Deep Neural Networks with Embedded Invariance. 
 *Omid Razizadeh* Master thesis 
 *Kaivalya Pandey* Deep Reinforcement Learning 
 -*Alix Bernard* Deep Learning based Approach to Reduced Order Modelling-.| 

 h3. February, 2020 

 |6, #3133|Planning the semester| 
 |13, #3133|Planning the semester| 
 |20, #3136|*Nikita Nikolaev* Zero and Few shot learning 
 ~~25 min slot~~ 
 ~~25 min slot~~ 
 ~~25 min slot~~| 
 |27, #3135|*Daria Pirozhkova* ERNIE 
 -*Sergey Garmaev* Reservoir Computing- 
 ~~25 min slot~~ 
 ~~25 min slot~~| 

 h2. Schedule 2019, fall 

 Thursday, 18:10, cab 5239 NSU new building 

 h3. December, 2019 

 |5, #2819|*Rohan Rahore* “Why Should I Trust You?” Explaining the Predictions of Any Classifier 
 *Jetina Tsvaki* Thesis 
 *Omid Razizadeh* Thesis 
 -*Mihail Rodin* Style transfer- 
 -*Mohammed Sweilam*-| 
 |12, #2860|*Ravi Kumar* Thesis 
 *Raphael Blankson* 
 *Nikita Nikolaev* 
 *Abhishek Saxena* 
 *Rishabh Tiwarri*| 
 |19, #2946|Conducted by *Kaivalya Anand Pandey* 
 *Jetina Tsvaki* Paper 
 -*Elizaveta Tagirova* Paper with code: Deep-speare: A Joint Neural Model of Poetic Language, Meter and Rhyme- 
 -*Elizaveta Tagirova* Master thesis- 
 -*Vladislav Panferov*- 
 *Mikhail Liz* CosFace 
 *Alexander Rusnak*| 
 |26, #|*Mihail Rodin* Style transfer 
 *Mohammed Sweilam* 
 -*Alexander Rusnak*- 
 *Owen Siyoto* Master thesis 
 *Owen Siyoto* Efficient Net 
 Rescheduled: 
 * *Elizaveta Tagirova* Paper with code: Deep-speare: A Joint Neural Model of Poetic Language, Meter and Rhyme- 
 * *Elizaveta Tagirova* Master thesis 
 * *Vladislav Panferov*| 

 h3. November, 2019 

 |7, #2660|*Sergey Garmaev* 
 *Dinesh Reddy* 
 *Daria Pirozhkova* 
 -*Oladotun Aluko*- 
 *Ravi Kumar* Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the BraTS 2018 Challenge| 
 |14, #2720|*Roman Kozinets*, Weight Agnostic Neural Networks 
 *Roman Kozinets*, Master thesis 
 *Elena Voskoboy* A neural algorithm of artistic style 
 *Alix Bernard* 
 -*Oladotun Aluko*-| 
 |21, #2726|*Kaivalya Pandey* 
 *Alexander Donets* 
 -*Rishabh Tiwari*- 
 *Andrey Yashkin* 
 *Oladotun Aluko*| 
 |28, #2766|*Alexey Korolev* 
 *Kirill Kalmutskiy* 
 *Mukul Vishwas* 
 *Antoine Kristanek*| 

 h3. October, 2019 

 |3, #2447|~~25 min slot~~ 
 ~~25 min slot~~ 
 ~~25 min slot~~ 
 ~~25 min slot~~| 
 |10, #2456|Scientific Advisor: prof. Yakovenko S.N. 
 Scientific Advisor: Postovalov S.N. 
 Scientific Advisor: Bondarenko I., Batura T.V. 
 ~~25 min slot~~| 
 |17, #2473|*Munyaradzi Njera* Paper 
 ~~25 min slot~~ 
 ~~25 min slot~~ 
 ~~25 min slot~~| 
 |24, #|Scientific Advisor: prof. Palchunov D.E. 
 *Munyaradzi Njera* Thesis 
 *Vassily Baranov*| 
 |31, #2638|*Omid Razizadeh*, Data-driven predictive using field inversion 
 ~~25 min slot~~ 
 *Watana Pongsapas* 
 -*Ravi Kumar* Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the BraTS 2018 Challenge-| 

 h3. September, 2019 

 1. Introduction 
 2. Scientific advisors presentations: https://trello.com/b/859tElZm/scientfic-advisors-19-21 

 Presented: 
 # Taylakov D. (Digital Field Technology) 
 # Kolonin A. 
 # Okunev A. 
 # Usov E. (NNTC.pro) 

 To be presented: 
 # ... see https://trello.com/b/859tElZm/scientfic-advisors-19-21 

 3. Planning the semester #2435 (20.09.2019, 26.09.2019) 

 h2. Schedule 2019, spring 
 Thursday, 16:20, cab 5212 NSU new building 

 h3. May, 2019 

 |23, #|*Munjaradzi Njera* Master thesis 
 *Andrey Marinov*: Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., & Dill, D. L. (2018). Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685. 
 *Ravi Kumar* Course work 
 -*Klim Markelov* Master thesis- 
 *Roman Kozinets* Master thesis (imaging) 
 *Anton Dorozhko* Reinforcement Learning for long-term reward optimization in recommender systems (Master thesis) 
 *Omid Razizadeh* Coursework: Detecting Alzheimer's disease using different machine learning approaches 
 *Artem Sergeev* Paper: Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition 
 *Artem Sergeev* Master Thesis| 
 |16, #|*Jetina Tsvaki* Master thesis 
 *Anik Chakrabarthy* Master thesis 
 *Dylan Bersans* Outside the closed world: On Using ML for Network Intrusion Detection 
 *Andrey Marinov* Master thesis: Research on an efficiency of the bilingual model for the silent speech recognition. 
 *Ivan Rogalsky* Open System Categorical Quantum Semantics in NLP (master thesis, review) 
 *Jetina Tsvaki* Predicting Oil Movement in a development System Using Deep Latent Dynamic Models| 

 h3. April, 2019 

 |25, #|Open Seminar jointly with Open Data Science Siberia 
 *Andrey Zubkov* Master thesis: Separability of silent speech phonemes for English language. Speaker and session independence. 
 *Evgeniy Kurochkin* Master thesis 
 *Alexandra Luchkina* Master thesis 
 *Leyuan Sheng* Master thesis: Text to speech synthesis using Generative Adversarial networks for speech enhancement. 
 *Malysheva Anastasia* Master thesis: The development and research of the prediction methods for time series obtained by the combination of different patterns. 
 *Olga Yakovenko* Course work 
 *Juan Pinzon* Master thesis: Sentiment Analysis in Social Media Texts (Spanish language) 
 Video: https://www.youtube.com/watch?v=T7Oa4hBR3g4| 
 |18, #|-*Ivan Rogalsky* Open System Categorical Quantum Semantics in NLP (master thesis, review) 
 *Ravi Kumar* Master thesis 
 *Jetina Tsvaki* Predicting Oil Movement in a development System Using Deep Latent Dynamic Models 
 *Dylan Bersans* Outside the closed world: On Using ML for Network Intrusion Detection 
 *Olga Yakovenko* Course work 
 *Juan Pinzon* Master thesis- replaced by 
 *Natalia Loukashevich* Modern trends on NLP (Tochka Kipenia, Academpark, 16:00, 18.04.2019)| 
 |11, #2164|*Leyuan Sheng* Tacotron 2 
 -*Klim Markelov* Master thesis- 
 -*Juan Pinzon* Master thesis- 
 *Ravi Kumar* State of the art Deep Learning: Evolving Machine Intelligence Toward Tomorrow's 
 *Malysheva Anastasia* Attention is all you need https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf | 
 |4, #2146|*Roman Kozinets* CNN for speech command recognition. Review 
 -*Ivan Rogalsky* Quantum-Theoretic Approach in Dicstr. Semantics- 
 *Akilesh Sivaswamy* Master thesis: Data classification using superposition and HMM 
 *Madina Tussupova* Master Thesis: Determination of grammatical categories using machine learning algorithms 
 *Madina Tussupova* 5.3. Wieting J., Kiela D. No Training Required: Exploring Random Encoders for Sentence Classification //arXiv preprint arXiv:1901.10444. – 2019. URL (20 min)| 

 h3. March, 2019 

 |28, #2105|-*Ravi Kumar* State of the art Deep Learning: Evolving Machine Intelligence Toward Tomorrow's- 
 *Munjaradzi Njera* Human-level control through deep reinforcement learning 
 *Thomas Vialars* Artificial Intelligence Safety and Cybersecurity: a Timeline of AI Failures 
 *Petr Gusev* MXNet 
 *Petr Gusev* Master Thesis| 
 |21, #2086|*Juan Pinzon* Universal Language Model Fine-tuning for Text Classification 
 *Elizaveta Tagirova* Master Thesis 
 -*Petr Gusev* MXNet- 
 -*Seth Gyamerah* Understanding consumer behavior-| 
 |14, #2076|*Omid Razizadeh* Pixel Recurrent Neural Networks. 
 *Klim Markelov* A Style-Based Generator Architecture for Generative Adversarial Networks. 
 *Anik Chakrabarthy* DisCoCat toy model 
 *Akilesh Sivaswamy* CosFace| 
 |7, #2071|-*Andrey Zubkov* Performance of Word Embeddings- (previously reported) 
 *Alexandra Luchkina* Triplet loss 
 *Evgeniy Kurochkin* Self-Taught Convolutional Neural Networks for Short Text Clustering 
 *Olga Yakovenko* BigARTM| 

 h3. February, 2019 

 |28, #2058|*Elizaveta Tagirova* Universal Sentence Encoder 
 *Andrey Zubkov* Neurohackathon on autism disorder: prized solution 
 ~~time slot (25 min)~~ 
 ~~time slot (25 min)~~| 
 |21, #2054|*Vyacheslav Mukhortov* Project Management Practice: teambiudling and project tasks. 
 *Evgeniy Pavlovskiy* Planning of academic seminar for Spring, 2019| 

 h2. Schedule 2018, fall 
 Thursday, 18:10, cab 5273 NSU new building 

 h3. December, 2018 

 |6, #2034|*Leyuan Sheng*, CycleGAN 
 *Tagirova Elizaveta*. LIME (local interpretable model-agnostic explanations) https://arxiv.org/pdf/1602.04938v1.pdf 
 *Luchkina Alexandra*, Sobolev Training 
 *Fishman Daniil*, Prediction of enhancer-promoter interactions via natural language processing| 
 |13, #|*Anton Kolonin*. Topics for master work. 
 *Evgeniy Averyanov*, Schmidt, Mark. Minimizing finite sums with the stochastic average gradient / M. Schmidt, N. Le Roux, F. Bach // Mathematical Programming. — 2017. — Vol. 162(1). — P. 83–112. — URL: https://link.springer.com/article/10.1007/s10107-016-1030-6 
 *Polina Potapova*, XNOR-Net, https://arxiv.org/pdf/1603.05279.pdf 
 *Lee Wonjai*. Bayesian CDF (continue with example) 
 | 
 |20, #|-*Artem Sergeev*. ArcFace- 
 *Gyamerah Seth*, Fuzzy time series on financial forecasting 
 -*Mulley Loic*, Triplet Loss https://arxiv.org/pdf/1503.03832.pdf- 
 *Kurochkin Evgeniy*, DenseNet 
 | 
 |27, #|*Julien Machet*, Machine learning top down and bottom up. 
 *Ivan Rogalsky* 
 *Arsentiy Melnikov* Teacher student curriculum learning https://arxiv.org/pdf/1707.00183.pdf 
 *Loic Mulley*, Triplet Loss https://arxiv.org/pdf/1503.03832.pdf 
 *Artem Sergeev*, ArcFace| 

 h3. November, 2018 

 |1, #|*Petr Gusev*. ResNet, ResNeXt K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016 
 *Anastasia Malysheva*, Variational Autoencoders 
 *Anik Chakrabarthy*. Quantum Semantics 
 ~~25 min slot~~| 
 |8, #|*Akilesh Sivawamy*, Mobile NN. 
 *Lee Wonjai*. Bayesian CDF 
 -*Polina Potapova*, XNOR-Net, https://arxiv.org/pdf/1603.05279.pdf- (moved to December) 
 *Olga Yakovenko*, RNN for Speech Recognition| 
 |15, #|*Ravi Kumar*, Deep Learning in Mobile and Wireless Networks: a Survey 
 *Munjaradzi Njera*, Attentioned based LSTM 
 *Juan Fernando Pinzon Correa*, Rapids AI 
 *Urynbassarov Mukhtar*, GAN| 
 |22, #|lost| 
 |29, #|*Roman Kozinets*, Siamese NN 
 *Omid Razizadeh*, tSNE 
 *Jetina Tsvaki*, Natural language based financial forecasting: a survey 
 *Owen Siyoto*, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network| 

 h3. October, 2018 

 |18, #2028|Planning the semester| 
 |25, #|*Klim Markelov*, Capsule NN 
 *Andrey Zubkov*, Dynamic Word Embeddings https://arxiv.org/abs/1804.07983 
 *Vitaly Poteshkin*, MixUp 
 Planning the semester| 

 h3. September, 2018 

 1. 2nd year students coursework pre-defence: (1) #2008, (2) 14.09.2018. 

 2. Scientific advisors presentations: https://trello.com/b/ZlMTMsS8/bdaai-scientific-topics 

 # Taylakov D. 
 # Savostyanov A.N. 
 # Duchkov A. 
 # Golovin S. 
 # Pavlovskiy E. 
 # Kohanovskiy A. 
 # Sviridenko D. 
 # Redyuk A. 
 # Vityaev E. 

 h2. [[Archive]]