Project

General

Profile

Seminars schedule » History » Version 93

« Previous - Version 93/552 (diff) - Next » - Current version
Evgeniy Pavlovskiy, 2018-12-25 18:10


Seminar "Big Data Analytics"

Schedule 2018, fall
Thursday, 18:10, cab 5273 NSU new building

September, 2018

1. 2nd year students coursework pre-defence: (1) #2008, (2) 14.09.2018.

2. Scientific advisors presentations: https://trello.com/b/ZlMTMsS8/bdaai-scientific-topics

  1. Taylakov D.
  2. Savostyanov A.N.
  3. Duchkov A.
  4. Golovin S.
  5. Pavlovskiy E.
  6. Kohanovskiy A.
  7. Sviridenko D.
  8. Redyuk A.
  9. Vityaev E.

October, 2018

18, #2028 Planning the semester
25, # Klim Markelov, Capsule NN
Andrey Zubkov, Dynamic Word Embeddings https://arxiv.org/abs/1804.07983
Vitaly Poteshkin, MixUp
Planning the semester

November, 2018

1, # Petr Gusev. ResNet, ResNeXt K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016
Anastasia Malysheva, Variational Autoencoders
Anik Chakrabarthy. Quantum Semantics
~25 min slot~
8, # Akilesh Sivawamy, Mobile NN.
Lee Wonjai. Bayesian CDF
Polina Potapova, XNOR-Net, https://arxiv.org/pdf/1603.05279.pdf (moved to December)
Olga Yakovenko, RNN for Speech Recognition
15, # Ravi Kumar, Deep Learning in Mobile and Wireless Networks: a Survey
Munjaradzi Njera, Attentioned based LSTM
Juan Fernando Pinzon Correa, Rapids AI
Urynbassarov Mukhtar, GAN
22, # lost
29, # Roman Kozinets, Siamese NN
Omid Razizadeh, tSNE
Jetina Tsvaki, Natural language based financial forecasting: a survey
Owen Siyoto, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

December, 2018

6, #2034 Leyuan Sheng, CycleGAN
Tagirova Elizaveta. LIME (local interpretable model-agnostic explanations) https://arxiv.org/pdf/1602.04938v1.pdf
Luchkina Alexandra, Sobolev Training
Fishman Daniil, Prediction of enhancer-promoter interactions via natural language processing
13, # Anton Kolonin. Topics for master work.
Evgeniy Averyanov, Schmidt, Mark. Minimizing finite sums with the stochastic average gradient / M. Schmidt, N. Le Roux, F. Bach // Mathematical Programming. — 2017. — Vol. 162(1). — P. 83–112. — URL: https://link.springer.com/article/10.1007/s10107-016-1030-6
Polina Potapova, XNOR-Net, https://arxiv.org/pdf/1603.05279.pdf
Lee Wonjai. Bayesian CDF (continue with example)
20, # Artem Sergeev. ArcFace
Gyamerah Seth, Fuzzy time series on financial forecasting
Mulley Loic, Triplet Loss https://arxiv.org/pdf/1503.03832.pdf
Kurochkin Evgeniy, DenseNet
27, # Julien Machet, Machine learning top down and bottom up.
Ivan Rogalsky
Arsentiy Melnikov Teacher student curriculum learning https://arxiv.org/pdf/1707.00183.pdf
Loic Mulley, Triplet Loss https://arxiv.org/pdf/1503.03832.pdf
Artem Sergeev, ArcFace

Previous seminars

Archive